BioISI - Biosystems & Integrative Sciences Institute

Masters 4 - Molecular Biology FCUL

Masters 5 – Biochemistry for Health NOVA

Oxaloacetate decarboxylase complex from Vibrio cholerae

Place of work/: FCUL

Supervisors: Manuela M. Pereira

Contact: mmpereira@fc.ul.pt

Abstract

Life relies on the constant exchange of different forms of energy, i.e., on energy transduction.

All living organisms need energy to fuel life processes. External energy sources, light or chemical

compounds, are converted to biologically usable forms of energy, such as adenosine

triphosphate (ATP) or electrochemical gradients ($\Delta \mu$).

The majority of the organism seem to rely on a proton motive force but some microorganisms

depend on sodium gradient to survive. Many human and animal pathogens rely on the use of

Na+ as a coupling ion instead of or in addition to the H+. This capability to use a sodium motive

force might have an important role in energy metabolism and pathogenicity of some pathogens,

such as Vibrio cholerae, a Gram-negative pathogen responsible for 3 to 5 million cases of cholera

annually and 100,000 to 120,000 of deaths.

Oxaloacetate decarboxylase (OAD) was the first enzyme of the Na+-transport decarboxylases

family demonstrated to act as a Na+ primary pump. OAD couples the Gibbs energy change of

the decarboxylation reaction to the transport of Na+ across the membrane.

The main goal of this project is to explore the structure and function of the transmembrane

complexes OAD-1 and OAD-2 present in V. cholerae. In this project, the MSc student will learn

microbiology, molecular biology, biochemistry and biophysics methodologies. Specifically, the

student will perform, among other techniques, cell growths, protein expression, purification and

biochemical and biophysical characterizations.