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Abstract: Over the past few decades, species distribution modelling has been increasingly used to
monitor invasive species. Studies herein propose to use Cellular Automata (CA), not only to model
the distribution of a potentially invasive species but also to infer the potential of the method in
risk prediction of Reticulitermes grassei infestation. The test area was mainland Portugal, for which
an available presence-only dataset was used. This is a typical dataset type, resulting from either
distribution studies or infestation reports. Subterranean termite urban distributions in Portugal from
1970 to 2001 were simulated, and the results were compared with known records from both 2001 (the
publication date of the distribution models for R. grassei in Portugal) and 2020. The reported model
was able to predict the widespread presence of R. grassei, showing its potential as a viable prediction
tool for R. grassei infestation risk in wooden structures, providing the collection of appropriate
variables. Such a robust simulation tool can prove to be highly valuable in the decision-making
process concerning pest management.

Keywords: subterranean termites; infestation risk; cellullar automata; model

1. Introduction

Given the importance of monitoring potential pest species and understanding their re-
sponses to different environmental conditions, species distribution modelling has assumed
an increasingly significant role over the last few decades [1,2]. Species distribution models
have attempted to disentangle species-environment relationship by using sites of known
occurrence and non-occurrence, together with environmental variables over a wider study
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area [3]. However, data relating to true absence are rarely available, as the absence of a
given species may not be clearly distinguished from a lack of record. Hence, presence-only
datasets are commonly used in analytical biology [4].

In order to model these types of datasets, several statistical methods have been pro-
posed [4,5]. For this study, Cellular Automata (CA) [6] was selected, because of its inherent
simplicity and versatility, as it can simulate a variety of real-world systems, including
biological and ecological ones. CA is defined as being an infinite set of finite automata
spatially organized in cells. Each automaton can evolve between discrete states defined by
transition functions that consider the states of the neighboring automata [7]. Despite having
a relatively simple conceptual basis, CA can handle very complex ecological systems and,
as a result, is popular for studying spatially extended dynamics [7].

Reticulitermes Holmgren is a Holarctic genus of subterranean termite indigenous to
North America, the Mediterranean and Black Sea regions eastern Asia [8]. Both within their
native range and invaded areas, several Reticulitermes species have pest status because they
use wood and woody materials as their food source; their high economic impact makes
them one of the major deterioration agents of wood in buildings [9].

Subterranean termites are social insects organized in a caste system (colony) where
each cast plays a certain role: the workers, which look for food as part of their role of
sustaining the colony; the soldiers, which mainly defend the colony from predators; the
winged reproductives, whose mission is mainly the colony dispersion [10]. They require
contact to soil and moisture for the colony to establish and live. They also have negative
phototropism and, as a result, they usually live in galleries underground (or inside the
wood), built by themselves [10]. This behavior makes it difficult to find and control them,
as often an infestation is only detected at a relatively late stage.

The genus Reticulitermes Holmgren is suggested to be originally from the West Eu-
ropean zone [11], although these termites are widespread globally, which is due to their
invasive traits that increase the probability of creating viable propagules [12]. In Eu-
rope, seven Reticulitermes species have been described as native to the region, covering
a Mediterranean strip ranging from the Iberian Peninsula to north-eastern Greece, Crete
and Cyprus [9,13–18]. Termite damage to wooden structures and agriculture products, in
these areas, are increasing, and colonization in areas more northerly to their natural range,
together with impacts of climate change are concerning. The highly invasive Reticulitermes
flavipes (Kollar) is spreading its range in Europe [19] and has already been identified in the
most westerly points of Europe, including the Azorean islands [8,20] and Tenerife, with
their voracious presence in the latter creating havoc in 2019 [21].

In mainland Portugal, the only subterranean termite that has been identified to date
belongs to the species Reticulitermes grassei Clément [9] which was, up until 2006, included
in the complex Reticulitermes lucifugus. R. grassei originated from southwestern Europe
(Iberian Peninsula and France) and was identified in Britain and in Faial Island of the Azores
(~2000) [20,22]. More recently, R. grassei has also been identified in Zurich, Swizerland, a
country with no native termites [23]. The first written reports of termites in Portugal date
back to the early 20th Century [24], but their presence and impact in buildings has since
been the object of several different reports, including initial models of distribution [25]. The
importance of this species in the conservation of historic buildings has also been reported,
together with the last published distribution maps [26].

In this work, termite distribution in urban areas in Portugal from 1970 to 2001 (the
most recent date for the publication of distribution models for R. grassei in Portugal [25]),
was processed using Cellular Automata in a first approach to develop a simulation tool
that can be used to help predict R. grassei infestation risk. At this stage, we do not aim to
add extra data to those previously published, but to discuss the potential of the approach
towards this future development of a truly infestation risk predictor.
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2. Materials and Methods

An evaluation of termite distribution in the Portuguese mainland from 1970 to
2001 was undertaken to develop a simulation tool that can be used to predict R. gras-
sei infestation risk.

To define the initial conditions of the simulation, an account of termite existence reports
up until 1970 was carried out. This led to a representation of the Portuguese counties which
have reports of termite occurrence prior to the defined starting date (Figure 1a).
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Figure 1. (a) Portuguese mainland counties where termite presence was reported until 1970. The
counties represented in yellow are the ones where observations existed, whereas the ones in grey
are the ones where no termites were reported until 1970. (b) Portuguese mainland divided into a
11 × 6 grid, where each resulting cell has a 50 × 50 km dimension.

Consequently, using the Universal Transverse Mercator (UTM), as previously reported
by Nobre and Nunes in 2001 [25], the Portuguese mainland territory was divided into
50 × 50 km cells (Figure 1b) so that a Cellular Automata could be developed and simulated
throughout time. At this stage, the choice for 50 × 50 km cells was made taking into
consideration the available supporting information and its resolution power (lower cell
sizes, albeit potentially more accurate, lack data; bigger cell sizes lack the discriminatory
powers of the variables considered). The Portuguese mainland landscape was represented
and simulated as a 11 × 6 grid. This led to the identification of the cells in which termite
presence could be considered, according to the counties these cells encompass (Figure 2). In
addition, the cells in which no Portuguese territory existed were programmed to never have
termites (the probability of a transition from not having termites to having termites was
considered 0). This adjustment made the area considered for the simulation 112.500 km2, a
much closer value to the real 92.212 km2, when comparing to the 165.000 km2 considered
prior to this adjustment. Markov chains were considered for each cell, allowing the creation
of a stochastic model to predict the cells’ next state. The transition matrix of each cell was
different, as the conditions of the encompassed territory changed.
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Figure 2. Cell grid representing the Portuguese mainland where termite observation reports existed
before 1970. Each cell was defined according to termite presence (green) or absence (white) or to its
being outside the Portuguese mainland territory (black).

For each cell, two different states were defined: (1) Termites are present; (2) Termites are
not present; the transition between the two was dependent on both the cells characteristics,
i.e., human population (HP), insolation (IS), days of rainfall in a year (DR) and leptosols
(LS), and the presence/absence of termites in the surrounding cells. The elements taken
into consideration to analyze the cells’ probability to host termites were the ones that Nobre
and Nunes [25] found as the most relevant to calculate the probability of the presence of
R. grassei, which is given by:

P(R. grassei) =
1

1 + e−z (1)

where z is given by:

z = −8.2253 + 0.5769HP − 0.5967LS + 1.0364IS + 0.9936DR (2)

However, in order for termite presence in the surrounding cells to be incorporated
into the probability of R. grassei presence, the following formula was postulated:

P(R. grassei) =
1

1 + e−z +
1

1 + e−z NE (3)

with NE being a neighborhood termite presence and possibly exhibiting two different
potential values (0 or 1, depending on whether termites exist in at least one of the neighbor-
ing cells, while considering a Moore neighborhood, i.e., the 8 surrounding cells around a
central square on a two-dimensional lattice).

To calculate z, the values of HP, LS, IS, and DR must be defined in classes, as shown
in Tables 1–4, respectively. The classification of each cell that encompassed more than one
county, regarding the LS, IS, and DR, was done according to class prevalence, meaning that
the class given to a cell was the one which represented most of the counties in the given
cell. For HP, the total inhabitants of the counties in a given cell were calculated, and the
class given to that cell was done accordingly.
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Table 1. Class division for human population (HP), depending on the number of inhabitants in
each region.

Number of Habitants Class

<2000 1
[2000–4000] 2
[4000–6000] 3
[6000–8000] 4

[8000–10,000] 5
[10,000–20,000] 6
[20,000–30,000] 7
[30,000–40,000] 8
[40,000–60,000] 9
[60,000–100,000] 10

[100,000–400,000] 11
>400,000 12

Table 2. Class division for leptosols (LS), depending on the percentage of leptosols in each region.

Leptosols Class

0% 1
<25% 2

[25–50]% 3
[50–75]% 4

>75% 5

Table 3. Class division for insolation (IS), depending on the hours of sunshine per year for each cell.

Hours of Sunshine (per Year) Class

[1100–8002] 1
[2101–2400] 2
[2401–2700] 3
[2701–3000] 4
[3001–3200] 5

Table 4. Class division for days of rainfall in a year (DR), depending on the hours of sunshine per
year for each cell.

Days of Rainfall (per Year) Class

0 1
[1–50] 2

[51–75] 3
[76–100] 4

[101–110] 5

After class fitting, the probabilities for each cell were calculated and used in the
simulations. The simulation tool was developed in Python 3.8 [27], and the modules used
for the simulations were Pandas [28] and NumPy [29].

Additionally, a simple map with the R. grassei presence, as reported up to 2020 on a
termite occurrence data base maintained by the National Laboratory for Civil Engineering
(LNEC), was constructed, to further evaluate our predictions. The rationality behind this
is based on the reported observation of termite occurrence being linked to the infestation
of wood in buildings, which implies a delay of the reporting process and results in a
cumulative dataset where current reported incidences likely reflect events that initiated
years before.
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3. Results

The 31-year span simulation resulted in the termite distribution throughout mainland
Portugal presented in Figure 3. According to the simulation, termite distribution in the
Portuguese mainland should have been almost complete, with termites being expected to
exist in all but three counties of the Portuguese mainland territory (Figure 3). The lower
probability for termite infestation to occur in the three north-east counties resulted from the
prevalent landscape conditions combined with the reduced number of neighboring cells’ a
consequence to it being in the extremities of the simulated model.
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Figure 3. (a) Cell grid representing the Portuguese mainland where, according to the simulation,
termites existed in 2001. Each cell was defined according to termite presence (green) or absence
(white) or to its being outside the Portuguese mainland territory (black). (b) Portuguese mainland
counties where termite existence is predicted to have existed, according to the simulations, in 2001.
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The constructed map of reported R. grassei infestations until 2020 (Figure 4b) is shown
against the initial map of the reported cases until 1970 (Figure 4a) for easiness of comparison.
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4. Discussion

The model herein predicted the widespread risk of presence of R. grassei, with the
exception of a single cell. Interestingly, this cell corresponded to the lowest population
density (the cells class for HP was 6). Furthermore, the region showed a relatively large
area of leptosols, characterized by either a very shallow soil over hard rock or a deeper soil
that was extremely gravelly and/or stony (leptosols class 3). Either way, these are soils
that theoretically hinder subterranean nesting and foraging activities, and hence lead to a
decrease in that cell’s probability to host subterranean termites.

Nevertheless, as Nobre and Nunes [25] mentioned, there is a clear association between
the data used and human variables, meaning that the model (and, consequently, the
simulation tool which was based on it) is not supposed to be used to address the question
of natural termite distribution nor of habitat selection, but only of the association between
human societies development and termite infestation of buildings.

Based on the previously found relevant ecological variables to R. grassei distribu-
tion [25], the developed model predicted a more widespread presence of the termites than
previously reported in 2001. This is, however, not surprising and can be described by two
factor classifications:

Inherent to the CA Approach

(a) The classification of each cell for LS, IS, and DR was undertaken according to the most
frequent class present in the totality of the region. However, if smaller cells had been
considered, the classes of each zone might have been different, which would have led
to larger, or smaller, probabilities for termite infestation;

(b) Relatively large cells were considered; thus, the HP class of each cell was invariably
high (larger cells comprehend more counties and, hence, more people), meaning that
the class given for a specific cell was, most of the times, larger than 8. This had a very
significant impact as, according to Nobre and Nunes [25], HP weight in the probability
for R. grassei existence increases exponentially with class increase;

(c) Termite presence in the neighboring cells was postulated to double the probability
of termite establishment in each cell. However, this value was not mathematically
estimated, meaning that the real predicted influence on the R. grassei probability could
possibly be different (and vary with the number of surrounding cells with termite pest
infestation, something that was also not considered in the developed simulation tool).

Inherent to Data Collection and Variables Used

(a) Almost every reported observation of termites was performed due to an infestation
of wood in buildings. This means that there could be many other locations where
termites existed (and were deteriorating agents of wood in buildings) but were not
reported to date. This would suggest that, as years go by and the number of reports
increase, the number of affected counties should also increase. This is exactly what
has happened and, nowadays, R. grassei distribution in applied wood in mainland
Portugal covers a much larger area (as can be seen in Figure 4b).

(b) The variables used were ecological variables only, whereas the presence data were
almost exclusively from infestations reports. No variables considering timeframe and
infestation dynamics as well as on the likelihood of infestation report and time since
first occurrence were considered.

The potential of the approach is clear, albeit the indicated need of improvement
towards a better fitting infestation model. For designing such a model, it is necessary to
include meaningful variables related to building materials, building physics, infestation
dynamics, and human infestation tolerance threshold. To achieve this, a stepwise approach
similar to that undertaken with the ecological variables is suggested. Once the significant
variables are identified, the CA approach could be applied towards a more robust R. grassei
infestation risk map.

Enhancement of prediction capability could also be achieved with a more refined
size cell. As such, it would be relevant to simulate the Portuguese mainland landscape
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with progressively but feasible smaller cells to select the scale in which no more significant
predictability improvement could be reached. Needless to say, the simulation tool should
be updated with a new and revised mathematical model for the probability of R. grassei
existence that includes environmental and ecological variables and building and socio-
logical ones. This should be done alongside the incorporation of a term that considers
the number of neighboring cells where termites are present to calculate the likelihood
of termite presence at a given time point. Finally, it would be interesting to also add a
graphical interface for a better visualization of the termite population in the considered grid
throughout time. Once such a robust infestation risk model is obtained, similar postulations
considering different climate change scenarios may be determined, thus increasing its value
as a termite pest management tool.

5. Conclusions

The possibility of predicting the infestation risk by R. grassei using CA has been
shown. Such a simulation tool, once optimized, will be useful in the control of termite
infestation. The prediction of an event before it happens is an extremely valuable tool in
decision making within a sustainable pest management framework. However, there are
still several improvements that need to be undertaken for the developed simulation model
to be considered as a viable prediction tool for R. grassei infestation risk map.
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